Vvmebel.com

Новости с мира ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стек в программировании

Основные принципы программирования: стек и куча

  • Переводы, 2 января 2017 в 21:02
  • Иван Бирюков

Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях — я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.

Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.

Стек — это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.

Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека — это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.

В итоге стек позволяет управлять памятью наиболее эффективным образом — но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.

Куча — это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.

Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями — это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.

В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности — если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.

Заключение

Вот вы и познакомились с понятиями стека и кучи. Вкратце, стек — это очень быстрое хранилище памяти, работающее по принципу LIFO и управляемое процессором. Но эти преимущества приводят к ограниченному размеру стека и специальному способу получения значений. Для того, чтобы избежать этих ограничений, можно пользоваться кучей — она позволяет создавать динамические и глобальные переменные — но управлять памятью должен либо сборщик мусора, либо сам программист, да и работает куча медленнее.

Принципы программирования: стек и куча: что это такое?

С каждым годом мы применяем для программирования всё более продвинутые языки, позволяющие писать меньше кода, но получать нужные нам результаты. Однако всё это не проходит даром для разработчиков. Так как программисты всё реже занимаются низкоуровневыми вещами, уже никого не удивляет ситуация, когда разработчик не вполне понимает, что означают такие понятия, как куча и стек. Что это такое, как происходит компиляция на самом деле, в чём разница между динамической и статической типизацией.

К сожалению, некоторые программисты, даже будучи «джуниорами» и работая на реальных проектах, не совсем чётко ориентируются в таких, казалось бы, олдскульных вещах. Именно поэтому в нашей сегодняшней статье мы вспомним, что же это такое — стек и куча, для чего они нужны и где применяются. Несмотря на то, что и стек, и куча связаны с управлением памятью, стратегия и принципы управления кардинально различаются.

Стек — что это такое?

Большое число задач, связанных с обработкой информации, поддаются типизированному решению. В результате совсем неудивительно, что многие из них решаются с помощью специально придуманных методов, терминов и описаний. Среди них нередко можно услышать и такое слово, как стек (стэк). Хоть и звучит этот термин, на первый взгляд, странно и даже сложно, всё намного проще, чем кажется.

Итак, стек — это метод представления однотипных данных в порядке LIFO (Last In — First Out, то бишь, «первый вошел — последний вышел»). Некоторые ассоциируют стек с оружейным магазином для патронов, так как принцип работы схож, и первый вставленный в магазин патрон будет использоваться в последнюю очередь (у термина стек бывают и другие значения, поэтому, если речь идёт не об информационных технологиях, то смысл лучше уточнить).

Стек и простой жизненный пример

Представьте, что на столе в коробке лежит стопка бумажных листов. Чтобы получить доступ к самому нижнему листу, вам нужно достать самый первый лист, потом второй и так далее, пока не доберётесь до последнего. По схожему принципу и устроен стек: чтобы последний элемент стека стал верхним, нужно сначала вытащить все остальные.

Стек и особенности его работы

Перейдя к компьютерной терминологии, скажем, что стек — это область оперативной памяти, создаваемая для каждого потока. И последний добавленный в стек кусочек памяти и будет первым в очереди, то есть первым на вывод из стека. И каждый раз, когда функцией объявляется переменная, она, прежде всего, добавляется в стек. А когда данная переменная пропадает из нашей области видимости (к примеру, функция заканчивается), эта самая переменная автоматически удаляется из стека. При этом если стековая переменная освобождается, то и область памяти, в свою очередь, становится доступной и свободной для других стековых переменных.

Благодаря природе, которую имеет стек, управление памятью становится весьма простым и логичным для выполнения на центральном процессоре. Это повышает скорость и быстродействие ЦП, и в особенности такое происходит потому, что время цикла обновления байта весьма незначительно (данный байт, скорее всего, привязан к кэшу центрального процессора).

Тем не менее у данной довольно строгой формы управления имеются и свои недостатки. Например, размер стека — это величина фиксированная, в результате чего при превышении лимита памяти, выделенной на стеке, произойдёт переполнение стека. Как правило, размер задаётся во время создания потока, плюс у каждой переменной имеется максимальный размер, который зависит от типа данных. Всё это позволяет ограничивать размеры некоторых переменных (допустим, целочисленных).

Кроме того, это вынуждает объявлять размер более сложных типов данных (к примеру, массивов) заранее, так как стек не позволит потом изменить его. Вдобавок ко всему, переменные, которые расположены на стеке, являются всегда локальными.

Для чего нужен стек?

Главное предназначение стека — решение типовых задач, предусматривающих поддержку последовательности состояний или связанных с инверсионным представлением данных. В компьютерной отрасли стек применяется в аппаратных устройствах (например, в центральном процессоре, как уже было упомянуто выше).

Практически каждый, кто занимался программированием, знает, что без стека невозможна рекурсия, так как при любом повторном входе в функцию требуется сохранение текущего состояния на вершине, причём при каждом выходе из функции, нужно быстро восстанавливать это состояние (как раз наша последовательность LIFO).

Если же копнуть глубже, то можно сказать, что, по сути, весь подход к запуску и выполнению приложений устроен на принципах стека. Не секрет, что прежде чем каждая следующая программа, запущенная из основной, будет выполняться, состояние предыдущей занесётся в стек, чтобы, когда следующая запущенная подпрограмма закончит выполняться, предыдущее приложение продолжило работу с места остановки.

Стеки и операции стека

Если говорить об основных операциях, то стек имеет таковых две: 1. Push — ни что иное, как добавление элемента непосредственно в вершину стека. 2. Pop — извлечение из стека верхнего элемента.

Также, используя стек, иногда выполняют чтение верхнего элемента, не выполняя его извлечение. Для этого предназначена операция peek.

Как организуется стек?

Когда программисты организуют или реализуют стек, они применяют два варианта: 1. Используя массив и переменную, указывающую на ячейку вершины стека. 2. Используя связанные списки.

У этих двух вариантов реализации стека есть и плюсы, и минусы. К примеру, связанные списки считаются более безопасными в плане применения, ведь каждый добавляемый элемент располагается в динамически созданной структуре (раз нет проблем с числом элементов, значит, отсутствуют дырки в безопасности, позволяющие свободно перемещаться в памяти программного приложения). Однако с точки зрения хранения и скорости применения связанные списки не столь эффективны, так как, во-первых, требуют дополнительного места для хранения указателей, во-вторых, разбросаны в памяти и не расположены друг за другом, если сравнивать с массивами.

Подытожим: стек позволяет управлять памятью более эффективно. Однако помните, что если вам потребуется использовать глобальные переменные либо динамические структуры данных, то лучше обратить своё внимание на кучу.

Стек и куча

Куча — хранилище памяти, расположенное в ОЗУ. Оно допускает динамическое выделение памяти и работает не так, как стек. По сути, речь идёт о простом складе для ваших переменных. Когда вы выделяете здесь участок памяти для хранения, к ней можно обращаться как в потоке, так и во всём приложении в целом (именно так и определяются переменные глобального типа). По завершении работы приложения все выделенные участки освобождаются.

Размер кучи задаётся во время запуска приложения, однако, в отличие от того, как работает стек, в куче размер ограничен только физически, что позволяет создавать переменные динамического типа.

Если сравнивать, опять же, с тем, как работает стек, то куча функционирует медленнее, т. к. переменные разбросаны по памяти, а не находятся вверху стека. Тем не менее данный факт не уменьшает важности кучи, и если вам надо работать с глобальными либо динамическими переменными, она больше подходит. Однако управлять памятью тогда должен программист либо сборщик мусора.

Итак, теперь вы знаете и что такое стек, и что такое куча. Это довольно простые знания, больше подходящие для новичков. Если же вас интересуют более серьёзные профессиональные навыки, выбирайте нужный вам курс по программированию в OTUS!

Использование стека в программировании;

Стек

Стек — самая популярная и, пожалуй, самая важная структура данных в программировании. Стек представляет собой запоминающее устройство, из которого элементы извлекаются в порядке, обратном их добавлению. Это как бы неправильная очередь, в которой первым обслуживают того, кто встал в нее последним. В программистской литературе общепринятыми являются аббревиатуры, обозначающие дисциплину работы очереди и стека. Дисциплина работы очереди обозначается FIFO, что означает первым пришел — первым уйдешь (First In First Out). Дисциплина работы стека обозначается LIFO, последним пришел — первым уйдешь (Last In First Out).

Стек можно представить в виде трубки с подпружиненым дном, расположеной вертикально. Верхний конец трубки открыт, в него можно добавлять, или, как говорят, заталкивать элементы. Общепринятые английские термины в этом плане очень красочны, операция добавления элемента в стек обозначается push, в переводе «затолкнуть, запихнуть». Новый добавляемый элемент проталкивает элементы, помещеные в стек ранее, на одну позицию вниз. При извлечении элементов из стека они как бы выталкиваются вверх, по-английски pop («выстреливают»).

Примером стека может служить стог сена, стопка бумаг на столе, стопка тарелок и т.п. Отсюда произошло название стека, что по-английски означает стопка. Тарелки снимаются со стопки в порядке, обратном их добавлению. Доступна только верхняя тарелка, т.е. тарелка на вершине стека. Хорошим примером будет также служить железнодорожный тупик, в который можно составлять вагоны.

Стек применяется довольно часто, причем в самых разных ситуациях. Объединяет их следующая цель: нужно сохранить некоторую работу, которая еще не выполнена до конца, при необходимости переключения на другую задачу. Стек используется для временного сохранения состояния не выполненного до конца задания. После сохранения состояния компьютер переключается на другую задачу. По окончании ее выполнения состояние отложенного задания восстанавливается из стека, и компьютер продолжает прерванную работу.

Почему именно стек используется для сохранения состояния прерванного задания? Предположим, что компьютер выполняет задачу A. В процессе ее выполнения возникает необходимость выполнить задачу B. Состояние задачи A запоминается, и компьютер переходит к выполнению задачи B. Но ведь и при выполнении задачи B компьютер может переключиться на другую задачу C, и нужно будет сохранить состояние задачи B, прежде чем перейти к C. Позже, по окончании C будет сперва восстановлено состояние задачи B, затем, по окончании B, — состояние задачи A. Таким образом, восстановление происходит в порядке, обратном сохранению, что соответствует дисциплине работы стека.

Стек позволяет организовать рекурсию, т.е. обращение подпрограммы к самой себе либо непосредственно, либо через цепочку других вызовов. Пусть, например, подпрограмма A выполняет алгоритм, зависящий от входного параметра X и, возможно, от состояния глобальных данных. Для самых простых значений X алгоритм реализуется непосредственно. В случае более сложных значений X алгоритм реализуется как сведение к применению того же алгоритма для более простых значений X. При этом подпрограмма A обращается сама к себе, передавая в качестве параметра более простое значение X. При таком обращении предыдущее значение параметра X, а также все локальные переменные подпрограммы A сохраняются в стеке. Далее создается новый набор локальных переменных и переменная, содержащая новое (более простое) значение параметра X. Вызванная подпрограмма A работает с новым набором переменных, не разрушая предыдущего набора. По окончании вызова старый набор локальных переменных и старое состояние входного параметра X восстанавливаются из стека, и подпрограмма продолжает работу с того места, где она была прервана.

На самом деле даже не приходится специальным образом сохранять значения локальных переменных подпрограммы в стеке. Дело в том, что локальные переменные подпрограммы (т.е. ее внутренние, рабочие переменные, которые создаются в начале ее выполнения и уничтожаются в конце) размещаются в стеке, реализованном аппаратно на базе обычной оперативной памяти. В самом начале работы подпрограмма захватывает место в стеке под свои локальные переменные, этот участок памяти в аппаратном стеке называют обычно блок локальных переменных или по-английски frame ( «кадр «). В момент окончания работы подпрограмма освобождает память, удаляя из стека блок своих локальных переменных.

Кроме локальных переменных, в аппаратном стеке сохраняются адреса возврата при вызовах подпрограмм. Пусть в некоторой точке программы A вызывается подпрограмма B. Перед вызовом подпрограммы B адрес инструкции, следующей за инструкцией вызова B, сохраняется в стеке. Это так называемый адрес возврата в программу A. По окончании работы подпрограмма B извлекает из стека адрес возврата в программу A и возвращает управление по этому адресу. Таким образом, компьютер продолжает выполнение программы A, начиная с инструкции, следующей за инструкцией вызова. В большинстве процессоров имеются специальные команды, поддерживающие вызов подпрограммы с предварительным помещением адреса возврата в стек и возврат из подпрограммы по адресу, извлекаемому из стека. Обычно команда вызова назывется call, команда возврата — return.

В стек помещаются также параметры подпрограммы или функции перед ее вызовом. Порядок их помещения в стек зависит от соглашений, принятых в языках высокого уровня. Так, в языке Си или C++ на вершине стека лежит первый аргумент функции, под ним второй и так далее. В Паскале все наоборот, на вершине стека лежит последний аргумент функции. (Поэтому, кстати, в Си возможны функции с переменным числом аргументов, такие, как printf, а в Паскале нет.)

В Фортране-4, одном из самых старых и самых удачных языков программирования, аргументы передаются через специальную область памяти, которая может располагаться не в стеке, поскольку до конца 70-х годов XX века еще существовали компьютеры вроде IBM 360 или ЕС ЭВМ без аппаратной реализации стека. Адреса возврата также сохранялись не в стеке, а в фиксированных для каждой подпрограммы ячейках памяти. Программисты называют такую память статической в том смысле, что статические переменные занимают всегда одно и то же место в памяти в любой момент работы программы. При использовании только статической памяти рекурсия невозможна, поскольку при новом вызове предыдущие значения локальных переменных разрушаются. В эталонном Фортране-4 использовались только статические переменные, а рекурсия была запрещена. До сих пор язык Фортран широко используется в научных и инженерных расчетах, однако, современный стандарт Фортрана-90 уже вводит стековую память, устраняя недостатки ранних версий языка.

Для чего нужны стеки?

Когда я узнал, что такое стек, мне стало интересно его практическое применение. Оказалось, что чаще всего эта структура используется для имплементации операции “Отмена” ( то есть, +Z или Ctrl+Z).

Чтобы понять, как это работает, разберемся с определением стека.

Что такое стек?

Стек — список элементов, который может быть изменён лишь с одной стороны, называющейся вершиной стека.

Представьте приспособление для раздачи тарелок, в котором тарелки стоят в стопке. Новые тарелки можно добавлять только поверх уже имеющихся, а брать можно лишь сверху. Таким образом, чем позже тарелку положат в стопку, тем раньше её оттуда возьмут. В рамках структур данных это называется LIFO-принципом (последним пришёл — первым ушёл).

Если использовать терминологию, то стек поддерживает операции добавления (push) и удаления (pop) элементов на его вершине.

Зачем использовать стек для отмены?

Потому что обычно мы хотим отменить последнее действие.

Стек позволяет добавлять элементы к его вершине и удалять тот элемент, который был последним.

Что произойдёт, если ни одно действие не будет отменено? Стек ведь станет огромным!

Верно. Если не удалять элементы из стека отмены, то есть не использовать операцию отмены, то он станет очень большим. Именно поэтому такие приложения, как Adobe Photoshop, с увеличением времени работы над файлом используют всё больше и больше оперативной памяти. Стек отмены хранит все действия, произведённые над файлом, в памяти до тех пор, пока вы не сохраните и не закроете файл.

Имплементация стека

Стек можно реализовать, используя либо связные списки, либо массивы. Я приведу пример реализации стека на обеих структурах на Python и расскажу о плюсах и минусах каждой.

Стек на связном списке:

Стек на массиве:

Что лучше?

В коде я указал сложность каждой из операций, используя “О” большое. Как видите, имплементации мало чем отличаются.

Однако есть некоторые нюансы, которые стоит учесть.

Массив

Это непрерывный блок памяти. Из-за этого при маленьком размере стека массив будет занимать лишнее место. Ещё один недостаток в том, что каждый раз при увеличении размера массива придётся копировать все уже существующие элементы в новую ячейку памяти.

Связный список

Он состоит из отдельных блоков в памяти и может увеличиваться бесконечно. Поэтому, с одной стороны, имплементация стека с использованием этой структуры немного лучше с точки зрения сложности алгоритма. С другой стороны, каждый элемент должен хранить адреса предыдущего и следующего элемента, что требует больше памяти.

Заключение

Так как динамический массив увеличивается в два раза при заполнении очереди, необходимость выделить дополнительную память будет возникать всё реже и реже. Кроме того, так как указатели не занимают много места, дополнительные данные в связных списках не критичны.

Как видим, между этими двумя реализациями стека практически нет различий — используйте ту, что нравится вам.

Стек в программировании

Стек (от англ. stack — стопка) — структура данных, представляющая из себя упорядоченный набор элементов, в которой добавление новых элементов и удаление существующих производится с одного конца, называемого вершиной стека. Притом первым из стека удаляется элемент, который был помещен туда последним, то есть в стеке реализуется стратегия «последним вошел — первым вышел» (last-in, first-out — LIFO). Примером стека в реальной жизни может являться стопка тарелок: когда мы хотим вытащить тарелку, мы должны снять все тарелки выше. Вернемся к описанию операций стека:

  • [math] mathtt [/math] — проверка стека на наличие в нем элементов,
  • [math] mathtt [/math] (запись в стек) — операция вставки нового элемента,
  • [math] mathtt [/math] (снятие со стека) — операция удаления нового элемента.

Для стека с [math]n[/math] элементами требуется [math]O(n)[/math] памяти, так как она нужна лишь для хранения самих элементов.

На массиве [ править ]

Перед реализацией стека выделим ключевые поля:

  • [math]mathtt [/math] — массив, с помощью которого реализуется стек, способный вместить не более [math]n[/math] элементов,
  • [math]mathtt[/math] — индекс последнего помещенного в стек элемента.

Стек состоит из элементов [math]mathtt [/math] , где [math]mathtt[/math] — элемент на дне стека, а [math]mathtt[/math] — элемент на его вершине. Если [math]mathtt[/math] , то стек не содержит ни одного элемента и является пустым (англ. empty). Протестировать стек на наличие в нем элементов можно с помощью операции — запроса [math] mathtt [/math] . Если элемент снимается с пустого стека, говорят, что он опустошается (англ. underflow), что обычно приводит к ошибке. Если значение [math]mathtt[/math] больше [math]mathtt[/math] , то стек переполняется (англ. overflow). (В представленном ниже псевдокоде возможное переполнение во внимание не принимается.)

Каждую операцию над стеком можно легко реализовать несколькими строками кода:

Как видно из псевдокода выше, все операции со стеком выполняются за [math]O(1)[/math] .

На саморасширяющемся массиве [ править ]

Возможна реализация стека на динамическом массиве, в результате чего появляется существенное преимущество над обычной реализацией: при операции push мы никогда не сможем выйти за границы массива, тем самым избежим ошибки исполнения.

Создадим вектор и определим операции стека на нём. В функции [math] mathtt [/math] Перед тем, как добавить новый элемент, будем проверять, не нужно ли расширить массив вдвое, а в [math] mathtt [/math] , перед тем, как изъять элемент из массива, — не нужно ли вдвое сузить размер вектора. Ниже приведён пример реализации на векторе.

  • [math]mathtt[/math] — старый массив, в котором хранится стек,
  • [math]mathtt[/math] — временный массив, где хранятся элементы после перекопирования,
  • [math]mathtt[/math] — верхушка стека,
  • [math]mathtt[/math] — размер массива.

На списке [ править ]

Стек можно реализовать и на списке. Для этого необходимо создать список и операции работы стека на созданном списке. Ниже представлен пример реализации стека на односвязном списке. Стек будем «держать» за голову. Добавляться новые элементы посредством операции [math] mathtt [/math] будут перед головой, сами при этом становясь новой головой, а элементом для изъятия из стека с помощью [math] mathtt [/math] будет текущая голова. После вызова функции [math] mathtt [/math] текущая голова уже станет старой и будет являться следующим элементом за добавленным, то есть ссылка на следующий элемент нового элемента будет указывать на старую голову. После вызова функции [math] mathtt [/math] будет получена и возвращена информация, хранящаяся в текущей голове. Сама голова будет изъята из стека, а новой головой станет элемент, который следовал за изъятой головой.

Заведем конструктор вида ListItem(next : ListItem, data : T)

  • [math]mathtt[/math] — значение в верхушке стека,
  • [math]mathtt[/math] — значение следующее за верхушкой стека.

В реализации на списке, кроме самих данных, хранятся указатели на следующие элементы, которых столько же, сколько и элементов, то есть, так же [math]mathtt[/math] . Стоит заметить, что стек требует [math]O(n)[/math] дополнительной памяти на указатели в списке.

Читать еще:  Что такое многопоточность в программировании
Ссылка на основную публикацию
Adblock
detector
×
×