Статистическое изучение динамики социально экономических явлений задачи - Новости с мира ПК
Vvmebel.com

Новости с мира ПК
10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Статистическое изучение динамики социально экономических явлений задачи

Статистическое изучение динамики социально-экономических явлений

1. Понятие ряда динамики и виды динамических рядов

Важнейший задачей статистики является изучение изменений показателей во времени, т.е. в динамике. Эта задача решается при помощи анализа рядов динамики (временных или хронологических рядов).

Ряд динамики представляет собой ряд изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. Составными элементами ряда динамики являются показатели уровня ряда (У) и периоды времени (годы, кварталы, месяцы, сутки) или моменты (даты) времени (t).

Уровни динамического ряда могут быть представлены абсолютными, средними или относительными величинами.

В зависимости от расстояния между уровнями ряды динамики подразделяются на:

— ряды с равноотстоящими уровнями по времени, полные – периоды следуют друг за другом или через определенные промежутки дат

ряды с неравноотстоящимиуровнями по времени, неполные. В рядах даются прерывающиеся периоды или неравномерные промежутки между датами.

По времени, отраженному в динамических рядах, они подразделяются на:

Моментные – это ряды динамики, уровни которых характеризуют состояние явления на определенные даты (моменты времени). Например, численность населения на конец года или численность работников на 1 число какого-то месяца. Для этого ряда характерно, что в каждом последующем уровне содержится полностью или частично значение предыдущего уровня, суммировать уровни моментного ряда не следует, т.к. это приведет к повторному счету.

Интервальные(периодические) ряды — это такие ряды, уровни которых характеризуют размер явления за конкретный период времени, например, добыча нефти за 2011 г. Суммирование его значений уровней позволит получить ряды динамики более крупных периодов.

2. Показатели, характеризующие интенсивность изменения явления во времени

Анализ интенсивности изменения во времени осуществляется с помощью абсолютных и относительных показателей, получаемых в результате сравнения уровней. К таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного % прироста. Если сравнению подлежат несколько последовательных уровней, то показатели ряда динамики могут вычисляться на постоянной и переменных базах сравнения. При этом принято называть сравниваемый уровень отчетным (уi), а уровень, с которым производится сравнение, базисным (y).

Для расчета аналитических показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. В качестве базисного выбирается либо начальный уровень ряда динамики, либо уровень, с которого начинается какой-то новый этап развития явления. Исчисленные при этом показатели называются базисными.

Для расчета аналитических показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим. Такие показатели называются цепными.

Базисные показатели ряда динамики характеризуют окончательный результат всех изменений в уровнях ряда от базисного периода до исследуемого периода. Цепные показатели ряда динамики характеризуют интенсивность изменения от периода к периоду в пределах изучаемого промежутка времени.

Абсолютный прирост (сокращение) характеризует размер увеличения (или уменьшения) уровня ряда за определенный промежуток времени. Представляет собой разность последующего и либо предшествующего, либо базисного уровня. Выражается в тех же единицах измерения, что и уровни ряда.

Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных абсолютных приростов равна последнему базисному абсолютному приросту.

Темп (или коэффициент) роста представляет собой отношение уровня ряда к предшествующему или принятому за базу сравнения уровню и показывает, во сколько раз уровень текущего периода больше или меньше предыдущего или базисного:

Тр ц = Тр б = 100

Темп прироста (сокращения) находится как отношение абсолютного прироста либо к предыдущему уровню, либо к базисному и показывает на сколько % (или долей единицы) уровень данного периода или момента времени больше (меньше) предшествующего уровня или базисного уровня.

Тпр ц = Тпр б = 100

Абсолютное значение 1% прироста показывает, какое абсолютное значение скрывается за относительным показателем – 1 % прироста — и представляет отношение цепного абсолютного прироста к цепному темпу прироста, выраженному в %, за один и тот же период.

|%|= или |%|=

При сравнении динамики развития двух явлений можно использовать коэффициенты опережения, представляющие собой отношение базисных или среднегодовых темпов роста за одинаковые отрезки времени по двум динамическим рядам. В числителе обычно берут наибольший темп роста, в знаменателе – наименьший. Коэффициент опережения в этом случае покажет, во сколько раз одно явление развивалось быстрее, чем другое: .

3. Обобщающие и средние характеристики ряда динамики

Для обобщающей характеристики динамики исследуемого явления определяют средние показатели: средние уровни ряда и средние показатели изменения уровней ряда.

Методы расчета среднего уровня ряда различны для интервальных и моментных рядов.

Для интервальных рядов средний уровень находится по формуле средней арифметической:

с равноотстоящими уровнями применяется средняя арифметическая простая: , где п – число уровней ряда;

а с неравноотстоящими уровнями средняя арифметическая взвешенная: , где t – длительность интервала между уровнями.

Средний уровень моментного ряда динамики определяется по средней хронологической:

с равноотстоящими уровнями применяется средняя хронологическая простая:

а с неравноотстоящими уровнями средняя хронологическая взвешенная: , где ti – длительность интервала между смежными уровнями.

Средний абсолютный прирост: ,

где п – число уровней ряда

Средний темп роста вычисляется двояко:

,

где n – число цепных темпов роста

или ,

где n – число уровней ряда.

Средний темп прироста находится на основании среднего темпа роста: (или 1).

4. Основные методы выявления тенденции изменения показателей в динамике

Выявление основной тенденции ряда является одним из методов анализа и обобщения динамических рядов. В статистике выявление основной тенденции развития производится чаще всего следующими методами: укрупнением интервалов, скользящей средней, выравниванием по среднему абсолютному приросту и аналитическим выравниванием.

Простейшим из методов выявления тенденции является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым относятся уровни ряда. Средняя, исчисленная по укрупненным интервалам, например, по 3 х — летиям или 5 ти -летиям, позволяет выявлять направление и характер основной тенденции развития.

Сглаживание ряда динамики при помощи скользящей средней заключается в том, что образуется ряд теоретических уровней, в котором случайные колебания погашаются. Такие средние уровни рассчитываются по подвижным или «скользящим» периодам, например, «скользящим» 3 х — летиям или 5 ти -летиям, которые образуются путем последовательного исключения начального уровня и включения следующего за последним периодом уровня. Сглаженный ряд получается короче фактического ряда данных на уровней с каждой стороны (в начале и в конце), где п — число единиц в укрупненном периоде. При применении метода скользящей средней большое значение имеет выбор интервала скольжения. Он должен соответствовать периоду колебаний в данном динамическом ряду. (Например, цикл метеоусловий составляет 10-12 лет, поэтому для анализа урожайности в динамике период укрупнения должен равняться 10-12).

Для того, чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во времени, используют выравнивание по среднему абсолютному приросту и аналитическое выравнивание.

Метод выравнивания по среднему абсолютному приросту применяется в случае равномерного развития явления, т.е. когда цепные абсолютные приросты близки по своим значениям. Выровненные уровни определяются: , где t — порядковый номер даты, начиная с 0 для начального уровня ряда.

5. Сущность метода наименьших квадратов и применение его для проведения аналитического выравнивания

Наиболее эффективным способом выявления основной тенденции, или, иначе, тренда, является аналитическое выравнивание методом наименьших квадратов. Сущность МНК заключается в том, что подбирается уравнение, которое наиболее точно отражает характер изменения динамического ряда за изучаемый период (на практике можно использовать графическое изображение уровней ряда). Как правило, если явление развивается в арифметической прогрессии, то для выравнивания может использоваться уравнение прямой ,

где — выровненное по уравнению значение уровня тренда.

– условное обозначение времени – для упрощения расчетов обычно выбирается так, чтобы :

Статистическое изучение динамики социально-экономических явлений

Рассмотрение практики использования моделей регрессии. Анализ качества эмпирического уравнения парной и множественной линейной регрессии. Оценка адекватности тренда и прогнозирование (критерий Фишера). Показателей вариаций; статистика заработанной платы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Теоретическая часть

1.1 Оценка адекватности тренда и прогнозирование (критерий Фишера)

2. Практическая часть

2.1 Задача 1. Статистическое исследование, сводка и группировка данных

2.2 Задача 2. Статистическое изучение динамики социально-экономических явлений

Читать еще:  Понятие классификация виды правоотношений по социальному обеспечению

2.3 Задача 3. Выборочный метод в статистических исследованиях. Показатели вариаций

2.4 Задача 4. Статистика заработанной платы

2.5 Задача 5. Выявление основной тенденции развития ряда динамики

  • 1. Теоретическая часть
    • 1.1 Оценка адекватности тренда и прогнозирование (критерий Фишера)
      • Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным.
      • Анализ качества эмпирического уравнения парной и множественной линейной регрессии начинают с построения эмпирического уравнения регрессии, которое является начальным этапом эконометрического анализа. Первое же, построенное по выборке, уравнение регрессии очень редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей важнейшей оценкой является проверка качества уравнения регрессии. В эконометрике принята устоявшаяся схема такой проверки, которая проводится по следующим направлениям:
      • · проверка статистической значимости коэффициентов уравнения регрессии
      • · проверка общего качества уравнения регрессии
      • · проверка свойств данных, выполнимость которых предполагалась при оценивании уравнения (проверка выполнимости предпосылок МНК).
      • Прежде, чем проводить анализ качества уравнения регрессии, необходимо определить дисперсии и стандартные ошибки коэффициентов, а также интервальные оценки коэффициентов. Корреляционный и регрессионный анализ, как правило, проводится для ограниченной по объёму совокупности.
      • Поэтому параметры уравнения регрессии (показатели регрессии и корреляции), коэффициент корреляции и коэффициент детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.
      • При анализе адекватности уравнения регрессии (модели) исследуемому процессу, возможны следующие варианты:
      • 1. Построенная модель на основе F-критерия Фишера в целом адекватна и все коэффициенты регрессии значимы. Такая модель может быть использована для принятия решений и осуществления прогнозов.
      • 2. Модель по F-критерию Фишера адекватна, но часть коэффициентов не значима. Модель пригодна для принятия некоторых решений, но не для прогнозов.
      • 3. Модель по F-критерию адекватна, но все коэффициенты регрессии не значимы. Модель полностью считается неадекватной. На ее основе не принимаются решения и не осуществляются прогнозы.
      • Проверить значимость (качество) уравнения регрессии-значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным, достаточно ли включенных в уравнение объясняющих переменных для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели, по каждому наблюдению из относительных отклонений определяют среднюю ошибку аппроксимации. Проверка адекватности уравнения регрессии (модели) осуществляется с помощью средней ошибки аппроксимации, величина которой не должна превышать 12-15% (максимально допустимое значение).
      • Оценка значимости уравнения регрессии в целом производится на основе F-критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной (y) от среднего значения (yср.) раскладывается на две части: «объясненную» и «необъясненную»:
      • Схема дисперсионного анализа имеет следующий вид:
      • (n -число наблюдений, m-число параметров при переменной x)
      • Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-критерия Фишера. Фактическое значение F -критерия Фишера сравнивается с табличным значением Fтабл. (б, k1, k2) при заданном уровне значимости б и степенях свободы k1= m и k2=n-m-1. При этом, если фактическое значение F-критерия больше табличного Fфакт > Fтеор, то признается статистическая значимость уравнения в целом. Для парной линейной регрессии m=1 , поэтому:
      • Эта формула в общем виде может выглядеть так:
      • Отношение объясненной части дисперсии переменной (у) к общей дисперсии называют коэффициентом детерминации и используют для характеристики качества уравнения регрессии или соответствующей модели связи. Соотношение между объясненной и необъясненной частями общей дисперсии можно представить в альтернативном варианте:
      • Коэффициент детерминации R2 принимает значения в диапазоне от нуля до единицы 0? R2 ?1. Коэффициент детерминации R2 показывает, какая часть дисперсии результативного признака (y) объяснена уравнением регрессии. Чем больше R2, тем большая часть дисперсии результативного признака (y) объясняется уравнением регрессии и тем лучше уравнение регрессии описывает исходные данные. При отсутствии зависимости между (у) и (x) коэффициент детерминации R2 будет близок к нулю. Таким образом, коэффициент детерминации R2 может применяться для оценки качества(точности) уравнения регрессии. Значение R-квадрата является индикатором степени подгонки модели к данным (значение R-квадрата близкое к 1.0 показывает, что модель объясняет почти всю изменчивость соответствующих переменных). Чтобы определить, при каких значениях R2 уравнение регрессии следует считать статистически не значимым, что, в свою очередь, делает необоснованным его использование в анализе, рассчитывается F-критерий Фишера: Fфакт > Fтеор — делаем вывод о статистической значимости уравнения регрессии. Величина F-критерия связана с коэффициентом детерминации R2xy (r2xy) и ее можно рассчитать по следующей формуле:
      • Либо при оценке значимости индекса детерминации (аналог коэффициента детерминации):
      • где: i2 — индекс (коэффициент) детерминации, который рассчитывается:
      • Использование коэффициента множественной детерминации R2 для оценки качества модели, обладает тем недостатком, что включение в модель нового фактора (даже несущественного) автоматически увеличивает величину R2. Поэтому, при большом количестве факторов, предпочтительнее использовать, так называемый, улучшенный, скорректированный коэффициент множественной детерминации R2, определяемый соотношением:
      • где p — число факторов в уравнении регрессии, n — число наблюдений. Чем больше величина p, тем сильнее различия между множественным коэффициентом детерминации R2и скорректированным R2. При использовании скорректированного R2, для оценки целесообразности включения фактора в уравнение регрессии, следует учитывать, что увеличение его величины (значения), при включении нового фактора, не обязательно свидетельствует о его значимости, так как значение увеличивается всегда, когда t-статистика больше единицы (|t|>1). При заданном объеме наблюдений и при прочих равных условиях, с увеличением числа независимых переменных (параметров), скорректированный коэффициент множественной детерминации убывает. При небольшом числе наблюдений, скорректированная величина коэффициента множественной детерминации R2 имеет тенденцию переоценивать долю вариации результативного признака, связанную с влиянием факторов, включенных в регрессионную модель. Низкое значение коэффициента множественной корреляции и коэффициента множественной детерминации R2 может быть обусловлено следующими причинами:
      • · в регрессионную модель не включены существенные факторы;
      • · неверно выбрана форма аналитической зависимости, которая нереально отражает соотношения между переменными, включенными в модель.
      • Следует также обратить внимание на важность анализа остатков . Остаток представляет собой отклонение фактического значения зависимой переменной от значения, полученного расчетным путем. При построении уравнения регрессии, мы можем разбить значение (у) в каждом наблюдении на 2 составляющие:
      • Отсюда:
      • Если еi=0, то для всех наблюдений фактические значения зависимой переменной совпадают с расчетными (теоретическими) значениями. Графически это означает, что теоретическая линия регрессии (линия, построенная по функции у=а0+а1х) проходит через все точки корреляционного поля, что возможно только при строго функциональной связи. Следовательно, результативный признак (у) полностью обусловлен влиянием фактора (х). На практике, как правило, имеет место некоторое рассеивание точек корреляционного поля относительно теоретической линии регрессии, т.е. отклонения эмпирических данных от теоретических еi?0. Величина этих отклонений и лежит в основе расчета показателей качества (адекватности) уравнения.
      • Большинство предположений множественной регрессии нельзя в точности проверить, однако можно обнаружить отклонения от этих предположений. В частности, выбросы (экстремальные наблюдения) могут вызвать серьезное смещение оценок, сдвигая линию регрессии в определенном направлении и, тем самым, вызывая смещение коэффициентов регрессии. Часто исключение всего одного экстремального наблюдения приводит к совершенно другому результату. Выбросы оказывают существенное влияние на угол наклона регрессионной линии и соответственно, на коэффициент корреляции. Всего один выброс может полностью изменить наклон регрессионной линии и, следовательно, вид зависимости между переменными. Одна точкавыброса обуславливает высокое значение коэффициента корреляции, в то время, как в отсутствие выброса, он практически равен нулю.
      • При численности объектов анализа до 30 единиц возникает необходимость проверки значимости (существенности) каждого коэффициента регрессии. При этом выясняют насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатами действия случайных причин. Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n tтабл. В этом случае, практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.
      • Для оценки значимости парного коэффициента корреляции (корень квадратный из коэффициента детерминации), при условии линейной формы связи между факторами, можно использовать t-критерий Стьюдента:
      • Анализ качества эмпирического уравнения множественной линейной регрессии предусматривает оценку мультиколлинеарности факторов. При оценке мультиколлинеарности факторов следует учитывать, что чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. Для отбора наиболее значимых факторов Хi должны быть учтены следующие условия:
      • · связь между результативным признаком и факторным должна быть выше межфакторной связи
      • · связь между факторами должна быть не более 0.7
      • · при высокой межфакторной связи признака отбираются факторы с меньшим коэффициентом корреляции между ними
      • Более объективную характеристику тесноты связи дают частные коэффициенты корреляции, измеряющие влияние на результативный фактор Уi фактора Хi при неизменном уровне других факторов. Коэффициент частной корреляции отличается от простого коэффициента линейной парной корреляции тем, что он измеряет парную корреляцию соответствующих признаков (У и Хi) при условии, что влияние на них остальных факторов (Хj) устранено.
Читать еще:  Ряд динамики характеризующий уровень развития социально экономического

Динамика социально-экономических явлений и задачи ее статистического изучения

Явления общественной жизни, изучаемые социально-экономической статистикой, находятся в непрерывном изменении и развитии. С течением времени – от месяца к месяцу, от года к году – изменяются численность населения и его состав, объем производимой продукции, уровень производительности труда и т.д., поэтому одной из важнейших задач статистики является изучение изменения общественных явлений во времени – процесса их развития, их динамики. Эту задачу статистика решает путем построения и анализа рядов динамики (временных рядов).

Ряд динамики(хронологический, динамический, временной ряд) – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Ряд включает два обязательных элемента: время и конкретное значение показателя (уровень ряда).

Каждое числовое значение показателя, характеризующее величину, размер явления, называется уровнем ряда.Кроме уровней каждый ряд динамики содержит указания о тех моментах либо периодах времени, к которым относятся уровни.

При подведении итогов статистического наблюдения получают абсолютные показатели двух видов. Одни из них характеризуют состояние явления на определенный момент времени: наличие на этот момент каких-либо единиц совокупности или наличие того или иного объема признака. К таким показателям относится численность населения, парк автомобилей, жилищный фонд, товарные запасы и т. д. Величину таких показателей можно определить непосредственно только по состоянию на тот или иной момент времени, а потому эти показатели и соответствующие ряды динамики и называются моментными.

Другие показатели характеризуют итоги какого-либо процесса за определенный период (интервал) времени (сутки, месяц, квартал, год и т. п.). Такими показателями являются, например, число родившихся, количество произведенной продукции, ввод в действие жилых домов, фонд заработной платы и др. Величину этих показателей можно подсчитать только за какой-нибудь интервал (период) времени, поэтому такие показатели и ряды их значений называются интервальными.

Из различного характера интервальных и моментных абсолютных показателей вытекают некоторые особенности (свойства) уровней соответствующих рядов динамики. В интервальном ряду величина уровня, представляющего собой итог какого-либо процесса за определенный интервал (период) времени, зависит от продолжительности этого периода (длины интервала). При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.

В моментных же рядах динамики, где тоже есть интервалы – промежутки времени между соседними в ряду датами, – величина того или иного конкретного уровня не зависит от продолжительности периода между соседними датами.

Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней, поэтому в интервальном ряду динамики уровни за примыкающие друг к другу периоды времени можно суммировать, получая итоги (уровни) за более продолжительные периоды (так, суммируя месячные уровни, получим квартальные, суммируя квартальные, получим годовые, суммируя годовые – многолетние).

Иногда путем последовательного сложения уровней интервального ряда за примыкающие друг к другу интервалы времени строится ряд нарастающих итогов, в котором каждый уровень представляет собой итог не только за данный период, но и за другие периоды, начиная с определенной даты (с начала года и т.д.). Такие нарастающие итогинередко приводятся в бухгалтерских и других отчетах предприятий.

В моментном динамическом ряду одни и те же единицы совокупности обычно входят в состав нескольких уровней, поэтому суммирование уровней моментного ряда динамики само по себе не имеет смысла, так как получающиеся при этом итоги лишены самостоятельной экономической значимости.

Выше говорилось о рядах динамики абсолютных величин, являющихся исходными, первичными. Наряду с ними могут быть построены ряды динамики, уровни которых являются относительными и средними величинами. Они также могут быть либо моментными, либо интервальными. В интервальных рядах динамики относительных и средних величин непосредственное суммирование уровней само по себе лишено смысла, так как относительные и средние величины являются производными и исчисляются путем деления других величин.

При построении и перед анализом ряда динамики нужно прежде всего обратить внимание на то, чтобы уровни ряда были сопоставимы между собой, так как только в этом случае динамический ряд будет правильно отражать процесс развития явления. Сопоставимость уровней ряда динамики – это важнейшее условие обоснованности и правильности выводов, полученных в результате анализа этого ряда. При построении динамического ряда надо иметь в виду, что ряд может охватывать большой период времени, в течение которого могли произойти изменения, нарушающие сопоставимость (территориальные изменения, изменения круга охвата объектов, методологии расчетов и т. д.).

При изучении динамики общественных явлений статистика решает следующие задачи:

•измеряет абсолютную и относительную скорость роста либо снижения уровня за отдельные промежутки времени;

•дает обобщающие характеристики уровня и скорости его изменения за тот или иной период;

•выявляет и численно характеризует основные тенденции развития явлений на отдельных этапах;

•дает сравнительную числовую характеристику развития данного явления в разных регионах или на разных этапах;

•выявляет факторы, обусловливающие изменение изучаемого явления во времени;

•делает прогнозы развития явления в будущем.

Статистическое изучение динамики социально-экономических явлений

Процессы и явления социально-экономической жизни общества, являющиеся предметом изучения статистики, находятся в постоянном движении и изменении. Для то­го, чтобы выявить тенденции и закономерности социально-экономического развития яв­лений, статистика строит особые ряды статистических показателей, которые называются рядами динамики(иногда их называют временными рядами), то есть ‑ это ряды изме­няющихся во времени значений статистического показателя, расположенных в хроноло­гическом порядке. В англоязычной литературе для временных рядов используется термин «time series».

Ряды динамики получаются в результате сводки и обработки материалов периоди­ческого статистического наблюдения. Повторяющиеся во времени (по отчетным перио­дам) значения одноименных показателей в ходе статистической сводки системати­зируются в хронологической последовательности. Значения показателя, составляющие ряд динамики, называются уровнями ряда.

Каждый ряд динамики характеризуется двумя параметрами: значениями времени и соответствующими им значениями уровней ряда. Уровни ряда обычно обозначаются «yt»: y1, y2 и т.д. В качестве показателя времени в рядах динамики могут указываться отдельные периоды (сутки, месяцы, кварталы, годы и т.д.) времени или определенные моменты (да­ты). Время в рядах динамики обозначается через «t».

Ряд динамики состоит из двух элементов:

1) уровня ряда (значения изучаемого показателя);

2) моментов (периодов) времени, когда фиксируется этот показатель.

Основные способы обработки рядов динамики:

1) укрупнение интервалов и расчет для них средних показателей;

2) сглаживание уровней способом скользящей средней;

3) выравнивание по аналитическим формулам.

Суть последнего способа заключается в том, что по эмпирическим данным находят теоретические (вероятностные) уровни, которые рассматриваются как некая функция времени.

Ряды динамики, как правило, представляют в виде таблицы или графически.

Ряды динамики могут быть классифицированы по следующим признакам:

В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и среднихвеличин. При этом ряды динамики абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин ‑ как производные.

Ряды динамики абсолютных величин наиболее полно характеризуют развитие про­цесса или явления, например, грузооборота транспорта, инвестиций в основной капитал, добычи топлива, уставного капитала коммерческих банков и т.д.

Ряды относительных величин могут характеризовать во времени темпы роста (или снижения) определенного показателя; изменение удельного веса того или иного показате­ля в совокупности или изменение показателей интенсивности отдельных явлений, напри­мер, удельного веса приватизированных предприятий в той или иной отрасли; производ­ства продукции на душу населения; структуры инвестиций в основной капитал по отрас­лям экономики, индекса потребительских цен и т.д.

Читать еще:  Зачеркнутый шрифт в фейсбук

Ряды динамики средних величин служат для характеристики изменения уровня яв­ления, отнесенного к единице совокупности, например: данные о среднегодовой числен­ности занятых в экономике; о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.

В зависимости от характера временного параметра ряды динамики делятся на моментные и интервальные.

Уровни моментныхрядов динамики характеризуют явление по состоянию на оп­ределенный момент времени.

Пример. Моментный ряд динамики, характеризующий численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г., представ­лен в таблице 13.1.

Таблица 13.1 ‑ Численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г

Статистические методы анализа динамики социально-экономических явлений 1 страница;

Как оценить надежность уравнения регрессии?

Какие показатели адекватности уравнения регрессии данным наблюдений применяют в статистике?

В чем состоит суть метода наименьших квадратов?

9. В чем состоит особенность уравнения регрессии в стандартных масштабах?

10. В чем состоят особенности изучения многомерных зависимостей?

11. Какие показатели используют для оценки тесноты многомерной связи?

Цель: сформировать знания о методах обработки динамических данных, способах расчета обобщающих характеристик рядов динамики, методах выявления трендов и циклов, методах моделирования и прогнозирования развития социально-экономических процессов.

Задачи: раскрыть понятие ряда динамики, их видов, элементов динамического ряда; представить основные показатели рядов динамики; обобщить основные методы выявления трендов и циклов; показать основные принципы моделирования и прогнозирования.

Понятие и классификация рядов динамики

Под динамикой в статистике понимается процесс развития некоторого явления во времени. Задачи оценки и выявления закономерностей развития изучаемого явления/процесса во времени предполагают необходимость статистического анализа рядов динамики.

Ряд динамики (временной ряд, хронологический ряд) – это ряд значений изучаемого показателя, изменяющихся во времени и расположенных в хронологическом порядке. Каждый ряд динамики состоит из двух элементов: уровня ряда и показателя времени.

Уровень рядадинамики, — это отдельное числовое значение статистического показателя, являющегося количественной оценкой изучаемого явления во времени, т.е. за отдельный период или на определенный момент времени.

Показатель времениряда динамики, — это определенные моменты (даты) или периоды (годы, месяцы и т.п.) времени, для которых зафиксированы значения уровней ряда динамики.

В зависимости от вида показателя различают ряды абсолютных, относительных и средних величин. В табл. 5.1 приведены ряды динамики указанных видов.

Число и средний размер квартир, построенных населением за счет собственных и заемных средств 1

1) по материалам статистического сборника «Социальное положение и уровень жизни населения России. 2008»

В зависимости от показателя времени различают моментные и интервальные ряды динамики. Это деление соответствует двум разным типам величин, составляющих ряд динамики: величин типа потока и величин типа запаса.

Моментный ряд динамики – это ряд, уровни которого отражают состояние изучаемого явления на определенные моменты времени (численность сотрудников на конец года, остаток денежных средств на начало месяца, запас сырья на конец смены и т.п.).

Интервальный (периодический) ряд динамики – это ряд, уровни которого характеризуют величину изучаемого явления за определенные интервалы (периоды) времени (производство продукции в месяц, доходы за год, квартальные затраты и т.п.).

В табл. 5.2 представлен моментный ряд динамики. Все три ряда динамики, приведенные в табл. 5.1, являются интервальными.

Численность работников государственных органов и органов местного самоуправления на конец года 1

1) по материалам статистического сборника «Российский статистический ежегодник. 2009»

В зависимости от временных расстояний между уровнями различают полные и неполные ряды динамики.

В полных рядах динамики уровни ряда являются равноотстоящими, т.е. значения показателя времени следуют через определенные промежутки (для моментных рядов) или следуют друг за другом (для интервальных рядов).

В неполных рядах динамики уровни ряда являются неравноотстоящими, т.е. значения показателя времени соответствуют неравномерным промежуткам между моментами или прерывающимся периодам.

Данные табл. 5.1 представляют собой полные ряды, в табл. 5.2 приведен неполный ряд динамики.

В зависимости от наличия определенной тенденции в исследуемом процессе ряды динамики могут быть стационарными и нестационарными.

В стационарных рядах динамики основные характеристики случайного процесса (математическое ожидание и дисперсия) постоянны; в нестационарных рядах динамики — зависят от времени.

Сопоставимость уровней и смыкание рядов динамики

Основным условием правильного построения и последующего анализа ряда динамики является сопоставимость всех уровней ряда. При этом на сопоставимость оказывают влияние множество условий.

Так, должна быть произведена периодизация динамики, т.е. выделение из всего процесса однородных этапов развития. Фактически, периодизация динамики представляет собой типологическую группировку по времени, целью которой является получение однородных, однокачественных временных периодов. При этом понятие однородности относительно и определяется целью исследования.

Показатель времени ряда динамики должен соответствовать интенсивности изучаемого процесса. Это значит, что при большой вариации уровней ряда динамики значения показателей должны регистрироваться с меньшими интервалами, чем при изучении стабильных процессов.

Достоверность данных рядов динамики и отсутствие пропусков отдельных уровней также влияет на итоговые результаты анализа.

Важнейшим требованием является сопоставимость статистических данных, составляющих уровни ряда динамики, которая должна быть обеспечена по следующим позициям:

1. по содержанию (показатели должны быть определены однозначно для всех моментов/периодов времени);

2. по кругу охватываемых объектов (так как ряд объектов со временем может переходить из одной категории в другую);

3. по методологии расчета (показатели должны быть расчитаны по одной и той же методике расчета для всех моментов/периодов времени);

4. по единицам измерения или счета (например, при изменении масштаба цен все статистические данные должны быть пересчитаны в новый масштаб);

5. по территориальным границам (при наличии изменений все данные должны быть пересчитаны с учетом новых границ стран, областей, районов и т.п.);

6. по времени регистрации (если на измеряемые показатели оказывает влияние сезонность, уровни моментного ряда должны относиться к одинаковым датам).

При несоблюдении в данных динамики вышеназванных условий для достижения сопоставимости используют различные приемы: прямого пересчета, смыкания рядов динамики, приведения к одному основанию.

Прямой пересчет заключается в корректировке первичных данных при обнаружении их несопоставимости по кругу объектов или территориальных границ.

При отсутствии данных, необходимых для прямого пересчета, используется прием смыкания рядов динамики, который заключается в объединении в один двух или нескольких рядов, исчисленных по разным методикам или разным территориальным границам. Для применения этого метода необходимо наличие для переходных периодов/моментов данных, исчисленных по разным методикам или в разных границах. Смыкание рядов динамики может быть произведено двумя способами.

Первый основан на расчете коэффициента соотношения уровней переходного периода/момента, рассчитанных по старой и новой методикам. Все данные за предшествующие изменению периоды/моменты времени пересчитываются путем умножения на данный коэффициент:

где — коэффициент соотношения уровней ряда для периода/момента t, в который произошло изменение методологии расчета;

, — уровни ряда динамики, относящиеся к одному периоду/моменты времени и исчисленные по старой и новой методике соответственно;

— условно-сопоставимый уровень для периода/момента k;

— несопоставимый уровень для периода/момента k.

В результате ряды смыкаются и уровни вновь образованного ряда оказываются условно сопоставимыми.

Второй способ смыкания рядов динамики заключается в переходе от абсолютных величин к относительным. Для этого уровни ряда в переходный период/момент, рассчитанные по разным методикам принимаются за 100%, а остальные пересчитываются в процентах по отношению к ним соответственно своему ряду.

В табл. 5.3 на условном примере приведена иллюстрация обоих способов смыкания рядов динамики. Данные свидетельствуют о том, что в 2007 году произошло изменение границ района. Для получения сопоставимых данных необходимо объединить два ряда динамики.

По первому способу смыкания был рассчитан коэффициент соотношения уровней . Затем, путем умножения на данный коэффициент, были пересчитаны данные в старых границах. В результате был получен сомкнутый сопоставимый ряд абсолютных величин численности населения в новых границах.

Для перехода к сомкнутому сопоставимому ряду динамики по второму способу для каждого ряда (в старых и новых границах) были пересчитаны абсолютные значения численностей в проценты к 2007 году. Например, , .

Динамика численности населения административного округа (цифры условные)

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector