Vvmebel.com

Новости с мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ряд динамики характеризующий уровень развития социально экономического

Анализ рядов динамики социально-экономических явлений

Онлайн школа английского языка нового поколения. Более 7 лет предоставляет обучение английскому языку по Skype (Скайп) и является лидером данного направления! Основные преимущества:

  • Вводный урок бесплатно;
  • Большое число опытных преподавателей (нейтивов и русскоязычных);
  • Курсы НЕ на определенный срок (месяц, полгода, год), а на конкретное количество занятий (5, 10, 20, 50);
  • Более 10 000 довольных клиентов.
  • Стоимость одного занятия с русскоязычным преподавателем — от 600 рублей, с носителем языка — от 1500 рублей

Понятие рядов динамики. Ряд динамики представляет собой ряд числовых значений определенного показателя в последовательные моменты, или периоды времени.

Числовые значения того или иного показателя, составляющие динамический ряд, называют уровнями ряда (у).

Ряды динамики выражают в таблицах или графически. При графическом изображении динамического ряда на оси абсцисс строится шкала времени (t), а на оси ординат – шкала уровней ряда (y).

Одной из основных задач исследования рядов динамики является выявление определенной закономерности в изменении уровней ряда (тренда).

Виды рядов динамики. В зависимости от вида показателей, ряды динамики подразделяют на ряды абсолютных, относительных и средних величин. При этом ряды абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин как производные.

Кроме того, уровни рядов динамики могут относиться к определенным моментам или интервалам времени. В зависимости от этого различают моментные и интервальные ряды.

Моментным называется ряд, уровни которого характеризуют величину явления по состоянию на определенные моменты времени, определенные даты (например, на 1 января, 23 марта и т.д.).

Интервальным называется такой ряд, уровни которого характеризуют величину изучаемого показателя, полученную в итоге за определенный период времени (например, 2009 год, 2010 год и т.д.). Отличительной особенностью интервальных рядов абсолютных величин является то, что уровни их можно дробить и складывать. Уровни моментных рядов складывать нельзя так как в его уровни могут входить одни и те же единицы изучаемой совокупности. Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет, поэтому их не складывают.

Сопоставимость рядов. При изучении явлений общественной жизни в статистике приходится иметь дело с различными видами динамических рядов. Основное требование к ним – сопоставимость уровней. Несопоставимость уровней в рядах динамики может возникнуть:

— изменение территории, к которой отнесены показатели;

— изменение методологии учета и расчета показателей;

— изменение в ценах для стоимостных показателей;

— различная продолжительность периодов, к которым относятся уровни;

— изменение даты учета.

Показатели для анализа рядов динамики. Показатели рядов динамики могут быть цепные и базисные, абсолютные и относительные.

Абсолютные показатели динамики характеризуют размер увеличения (уменьшения) уровней ряда динамики за некоторый временной период. С точки зрения количественной определенности эти показатели имеют те же единицы измерения, что и исходные показатели ряда динамики. Они получают знак «плюс», когда последующий уровень ряда динамики больше предыдущего, принятого за базу сравнения, то есть отмечается развитие (прирост) явления, и знак «минус», когда последующий уровень ряда динамики меньше предыдущего, т.е. наблюдается регресс (снижение, сокращение) анализируемого явления.

Абсолютный прирост базисный. Базисными называются показатели, когда при определении приростов из текущих уровней ряда динамики вычитают уровень, принятый за базу сравнения

Абсолютный прирост цепной. Цепные, когда при определении приростов из каждого текущего уровня ряда динамики вычитают предыдущий уровень ()

Между базисными и цепными приростами имеется связь: сумма цепных абсолютных приростов равна базисному приросту последнего уровня ряда динамики

Относительные показатели предполагают определение соотношений уровней динамического ряда. Они могут использоваться при сравнении динамических тенденций по различным совокупностям статистических данных и разным временным периодам. В числе относительных показателей наиболее распространены темпы роста и прироста, при этом различают цепные и базисные темпы роста и прироста.

Темпы роста базисные () рассчитывают как отношение уровней ряда текущего периода к уровню, принятому за базу сравнения

Темпы роста цепные () определяют соотношением текущих и предшествующих им уровней динамического ряда

Между базисными и цепными темпами роста имеется взаимосвязь: произведение последовательных цепных темпов роста равно темпу роста базисному, а отношение базисных темпов роста дает соответствующий цепной темп роста.

Темпы прироста – который характеризует относительную скорость изменения уровня в единицу времени.

а) базисный темп прироста

или

б) цепной темп прироста

или

Обобщающие показатели в рядах динамики. Для получения обобщающих показателей динамики социально экономических явлений определяются средние величины.

Средний уровень ряда динамики () рассчитывается по средней хронологической. Средней хронологической называется средняя, исчисленная из значений, изменяющихся во времени. В хронологической средней отражается совокупность тех условий, в которых развивалось изучаемое явление в данном промежутке времени. Методы расчета среднего уровня интервального и моментного рядов динамики различны. Для интервальных рядов с равноотстоящими уровнями средний уровень находится по формуле средней арифметической простой, а для неравноотстоящих уровней — по средней арифметической взвешенной.

Для равноотстоящих уровней

где n – число уровней ряда.

Для неравноотстоящих уровней ряда

где — длительность интервала времени между уровнями.

Средний уровень моментного равноотстоящего ряда динамики находятся по формуле средней хронологической:

или

Средний уровень моментных рядов динамики с неравноотстоящими уровнями определяется по формуле средней хронологической взвешенной:

или

Средний абсолютный прирост. Этот показатель дает возможность установить, насколько в среднем за единицу времени должен увеличиваться уровень ряда (в абсолютном выражении).

или или

Средний темп роста. Данный показатель является обобщающей характеристикой интенсивности измерения уровней ряда динамики, показывающий во сколько раз в среднем за единицу времени изменился уровень ряда.

где m – число индивидуальных цепных темпов роста.

Средний темп прироста не может быть определен непосредственно на основании последовательных темпов прироста или показателей среднего абсолютного прироста.

ТЕМА 8. АНАЛИЗ РЯДОВ ДИНАМИКИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ

Понятие рядов динамики.Ряд динамики представляет собой ряд числовых значений определенного показателя в последовательные моменты, или периоды времени.

Числовые значения того или иного показателя, составляющие динамический ряд, называют уровнями ряда (у).

Ряды динамики выражают в таблицах или графически. При графическом изображении динамического ряда на оси абсцисс строится шкала времени (t), а на оси ординат – шкала уровней ряда (y).

Одной из основных задач исследования рядов динамики является выявление определенной закономерности в изменении уровней ряда (тренда).

Виды рядов динамики. В зависимости от вида показателей, ряды динамики подразделяют на ряды абсолютных, относительных и средних величин. При этом ряды абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин как производные.

Кроме того, уровни рядов динамики могут относиться к определенным моментам или интервалам времени. В зависимости от этого различают моментные и интервальные ряды.

Читать еще:  Одноклассники социальная сеть моя страница вход без

Моментным называется ряд, уровни которого характеризуют величину явления по состоянию на определенные моменты времени, определенные даты (например, на 1 января, 23 марта и т.д.).

Интервальным называется такой ряд, уровни которого характеризуют величину изучаемого показателя, полученную в итоге за определенный период времени (например, 2009 год, 2010 год и т.д.). Отличительной особенностью интервальных рядов абсолютных величин является то, что уровни их можно дробить и складывать. Уровни моментных рядов складывать нельзя так как в его уровни могут входить одни и те же единицы изучаемой совокупности. Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет, поэтому их не складывают.

Сопоставимость рядов. При изучении явлений общественной жизни в статистике приходится иметь дело с различными видами динамических рядов. Основное требование к ним – сопоставимость уровней. Несопоставимость уровней в рядах динамики может возникнуть:

— изменение территории, к которой отнесены показатели;

— изменение методологии учета и расчета показателей;

— изменение в ценах для стоимостных показателей;

— различная продолжительность периодов, к которым относятся уровни;

— изменение даты учета.

Показатели для анализа рядов динамики.Показатели рядов динамики могут быть цепные и базисные, абсолютные и относительные.

Абсолютные показатели динамики характеризуют размер увеличения (уменьшения) уровней ряда динамики за некоторый временной период. С точки зрения количественной определенности эти показатели имеют те же единицы измерения, что и исходные показатели ряда динамики. Они получают знак «плюс», когда последующий уровень ряда динамики больше предыдущего, принятого за базу сравнения, то есть отмечается развитие (прирост) явления, и знак «минус», когда последующий уровень ряда динамики меньше предыдущего, т.е. наблюдается регресс (снижение, сокращение) анализируемого явления.

Абсолютный прирост базисный. Базисными называются показатели, когда при определении приростов из текущих уровней ряда динамики вычитают уровень, принятый за базу сравнения

Абсолютный прирост цепной. Цепные, когда при определении приростов из каждого текущего уровня ряда динамики вычитают предыдущий уровень ()

Между базисными и цепными приростами имеется связь: сумма цепных абсолютных приростов равна базисному приросту последнего уровня ряда динамики

Относительные показатели предполагают определение соотношений уровней динамического ряда. Они могут использоваться при сравнении динамических тенденций по различным совокупностям статистических данных и разным временным периодам. В числе относительных показателей наиболее распространены темпы роста и прироста, при этом различают цепные и базисные темпы роста и прироста.

Темпы роста базисные () рассчитывают как отношение уровней ряда текущего периода к уровню, принятому за базу сравнения

Темпы роста цепные () определяют соотношением текущих и предшествующих им уровней динамического ряда

Между базисными и цепными темпами роста имеется взаимосвязь: произведение последовательных цепных темпов роста равно темпу роста базисному, а отношение базисных темпов роста дает соответствующий цепной темп роста.

Темпы прироста – который характеризует относительную скорость изменения уровня в единицу времени.

а) базисный темп прироста

б) цепной темп прироста

Обобщающие показатели в рядах динамики.Для получения обобщающих показателей динамики социально экономических явлений определяются средние величины.

Средний уровень ряда динамики () рассчитывается по средней хронологической. Средней хронологической называется средняя, исчисленная из значений, изменяющихся во времени. В хронологической средней отражается совокупность тех условий, в которых развивалось изучаемое явление в данном промежутке времени. Методы расчета среднего уровня интервального и моментного рядов динамики различны. Для интервальных рядов с равноотстоящими уровнями средний уровень находится по формуле средней арифметической простой, а для неравноотстоящих уровней — по средней арифметической взвешенной.

Для равноотстоящих уровней

где n – число уровней ряда.

Для неравноотстоящих уровней ряда

где — длительность интервала времени между уровнями.

Средний уровень моментного равноотстоящего ряда динамики находятся по формуле средней хронологической:

Средний уровень моментных рядов динамики с неравноотстоящими уровнями определяется по формуле средней хронологической взвешенной:

Средний абсолютный прирост. Этот показатель дает возможность установить, насколько в среднем за единицу времени должен увеличиваться уровень ряда (в абсолютном выражении).

Средний темп роста. Данный показатель является обобщающей характеристикой интенсивности измерения уровней ряда динамики, показывающий во сколько раз в среднем за единицу времени изменился уровень ряда.

где m – число индивидуальных цепных темпов роста.

Средний темп прироста не может быть определен непосредственно на основании последовательных темпов прироста или показателей среднего абсолютного прироста.

Изучение основной тенденции развития.Важным направлением в исследовании закономерностей динамики социально-экономических процессов является изучение общей тенденции развития (тренда). Изменение рядов динамики возможно под воздействием постоянных, периодических и разовых причин и факторов, которые обуславливают необходимость изучения основных составляющих рядов динамики:

— тренда, долговременной компоненты ряда;

Тенденция роста может проявиться при визуальном обзоре исходной информации, в других рядах динамики она непосредственно не проявляется. Она может быть выражена расчетным путем в виде некоторого теоретического уровня.

При изучении тренда решаются взаимосвязанные задачи:

— выявление в изучаемом явлении наличия тренда с описанием качественных особенностей;

— измерение выявленного тренда, т.е. получение обобщающей количественной оценки основной тенденции развития.

На практике наиболее распространенными являются:

— сглаживание скользящей средней.

Метод укрупнения интервалов. Применяется для выполнения тренда в рядах динамики колеблющихся уровней. Главное в этом методе заключается в преобразовании первоначального ряда в более продолжительные периоды времени (месяцы в кварталы, кварталы в годы).

При этом способе обработки динамических рядов общий итог показателя укрупненных периодов можно получить лишь для абсолютных уровней интервальных рядов. Для рядов средних величин при укрупнении периодов вычисляются лишь новые средние уровни.

Выравнивание рядов динамики по аналитическим формулам. При этом способе на основе фактических данных ряда подбирается наиболее подходящая для отражения тенденции развития явления математическая формула, которая принимается за модель развития и по которой рассчитывают выравненные значения.

Простейшими формулами, выражающими тенденцию развития (тренд), являются:

— аналитическая прямая вида ;

— показательная функция ;

— парабола второго порядка ;

— гипербола .

Где — теоретический уровень, выравненный по t.

Выравнивание по прямой линии. Этот метод дает эффект, когда абсолютные приросты примерно постоянны, т.е. когда уровни изменяются в арифметической прогрессии.

Параметры и для искомой прямой находятся по способу наименьших квадратов, путем решения системы нормальных уравнений:

Эту систему легко упростить, если отсчет времени (при равных интервалах) вести от середины ряда. При нечетном числе уровней серединная точка (год, месяц и др.) принимается за 0, тогда предшествующие периоды обозначаются соответственно через -1 -2 -3, а следующие за серединным значением соответственно через +1, +2, +3.

При четном числе уровней ряда два серединных значения обозначаются через -1 и +1, а все остальные, через два интервала.

Читать еще:  Как отключить фейсбук от инстаграмма

При отчете времени от середины ряда и, следовательно,

1. Динамика социально-экономических явлений и задачи ее статистического изучения

1. Динамика социально-экономических явлений и задачи ее статистического изучения

Явления общественной жизни, изучаемые социально-экономической статистикой, находятся в непрерывном изменении и развитии. С течением времени – от месяца к месяцу, от года к году – изменяются численность населения и его состав, объем производимой продукции, уровень производительности труда и т. д. Поэтому одной из важнейших задач статистики является изучение изменения общественных явлений во времени – процесса их развития, их динамики. Эту задачу статистика решает путем построения и анализа рядов динамики (временных рядов).

Ряд динамики (хронологический, динамически