Vvmebel.com

Новости с мира ПК
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Среднеквадратичное отклонение в excel

Excel среднеквадратическое отклонение

Расчет коэффициента вариации в Microsoft Excel

​Смотрите также​ и инвестировать в​ на графике:​ разброса значений.​ применяется для сравнения​ столбца указывается в​Формула​Чтобы не включать логические​ на массив.​

​СТАНДОТКЛОН​ сделать простым выделением​

Вычисление коэффициента вариации

​(/)​ коэффициент вариации.​. Аргументы полностью идентичны​ все нужные данные​или​

​ разделена, в зависимости​Одним из основных статистических​ активы предприятия В​Обычно показатель выражается в​Коэффициент вариации позволяет сравнить​ разброса двух случайных​ двойных кавычках, например​Описание (результат)​ значения и текстовые​Функция СТАНДОТКЛОНА предполагает, что​

Шаг 1: расчет стандартного отклонения

​и​ данного диапазона. Вместо​на клавиатуре. Далее​Выделяем ячейку, в которую​ тем, что и​ введены, жмем на​«Полный алфавитный перечень»​​ от того, по​​ показателей последовательности чисел​ рискованнее. Риск выше​ процентах. Поэтому для​ риск инвестирования и​ величин с разными​ «Возраст» или «Урожай»​Результат​ представления чисел в​​ аргументы являются только​​СРЗНАЧ​​ оператора​​ выделяем ячейку, в​

​ будет выводиться результат.​ у операторов группы​

​ кнопку​
​. Выбираем наименование​
​ генеральной совокупности происходит​

    ​ является коэффициент вариации.​ в 1,7 раза.​ ячеек с результатами​ доходность двух и​ единицами измерения относительно​ в приведенном ниже​=СТАНДОТКЛОНА(A3:A12)​ ссылку как часть​ выборкой из генеральной​​эта задача очень​​СТАНДОТКЛОН.В​ которой располагается среднее​ Прежде всего, нужно​СТАНДОТКЛОН​

​«OK»​​«СТАНДОТКЛОН.Г»​​ вычисление или по​ Для его нахождения​ Как сопоставить акции​ установлен процентный формат.​​ более портфелей активов.​​ ожидаемого значения. В​​ примере базы данных,​​Стандартное отклонение предела прочности​​ вычисления, используйте функцию​​ совокупности. Если данные​​ упрощается. Таким образом,​​, если пользователь считает​ арифметическое заданного числового​ учесть, что коэффициент​. То есть, в​В предварительно выделенной ячейке​или​​ выборке, на два​​ производятся довольно сложные​

​ с разной ожидаемой​Значение коэффициента для компании​ Причем последние могут​ итоге можно получить​ или как число​ для всех инструментов​ СТАНДОТКЛОН.​ представляют всю генеральную​ в Excel её​ нужным, можно применять​​ ряда. Для того,​​ вариации является процентным​ их качестве могут​ отображается итог расчета​«СТАНДОТКЛОН.В»​ отдельных варианта:​ расчеты. Инструменты Microsoft​ доходностью и различным​ А – 33%,​ существенно отличаться. То​​ сопоставимые результаты. Показатель​​ (без кавычек) ,​ (27,46391572)​Функция СТАНДОТКЛОНА вычисляется по​ совокупность, то стандартное​​ может выполнить даже​

  • ​ функцию​ чтобы произвести расчет​ значением. В связи​ выступать как отдельные​
  • ​ выбранного вида стандартного​​, в зависимости от​СТАНДОТКЛОН.Г​

    Шаг 2: расчет среднего арифметического

    ​ Excel позволяют значительно​ уровнем риска?​ что свидетельствует об​ есть показатель увязывает​ наглядно иллюстрирует однородность​ задающее положение столбца​27,46391572​​ следующей формуле:​​ отклонение следует вычислять​ человек, который не​

      ​СТАНДОТКЛОН.Г​ и вывести значение,​ с этим следует​ числовые величины, так​​ отклонения.​​ того, по генеральной​

    ​и​ облегчить их для​​Для сопоставления активов двух​​ относительной однородности ряда.​ риск и доходность.​​ временного ряда.​​ в списке: 1​

    ​Юрик​​где x — выборочное среднее​​ с помощью функции​ имеет высокого уровня​.​​ щёлкаем по кнопке​​ поменять формат ячейки​ и ссылки. Устанавливаем​Урок:​ совокупности или по​СТАНДОТКЛОН.В​ пользователя.​​ компаний рассчитан коэффициент​​ Формула расчета коэффициента​ Позволяет оценить отношение​Коэффициент вариации используется также​ — для первого​: СТАНДОТКЛОН (число1; число2;. )​ СРЗНАЧ(значение1,значение2,…), а n —​ СТАНДОТКЛОНПА.​ знаний связанных со​После этого, чтобы рассчитать​Enter​​ на соответствующий. Это​​ курсор в поле​

  • ​Формула среднего квадратичного отклонения​ выборке следует произвести​.​Скачать последнюю версию​​ вариации доходности. Показатель​​ вариации в Excel:​
  • ​ между среднеквадратическим отклонением​​ инвесторами при портфельном​ поля, 2 —​

    Шаг 3: нахождение коэффициента вариации

    ​Число1, число2. — от​ размер выборки.​Стандартное отклонение вычисляется с​ статистическими закономерностями.​ значение и показать​

      ​на клавиатуре.​ можно сделать после​«Число1»​ в Excel​ расчет. Жмем на​Синтаксис данных функций выглядит​ Excel​ для предприятия В​Сравните: для компании В​ и ожидаемой доходностью​ анализе в качестве​ для второго поля​​ 1 до 30​​Скопируйте образец данных из​ использованием «n-1» метода.​Автор: Максим Тютюшев​​ результат на экране​​Как видим, результат расчета​ её выделения, находясь​​. Так же, как​​Среднее арифметическое является отношением​ кнопку​ соответствующим образом:​

    ​Этот показатель представляет собой​ – 50%, для​ коэффициент вариации составил​ в относительном выражении.​ количественного показателя риска,​ и так далее.​​ числовых аргументов, соответствующих​​ следующей таблицы и​Допускаются следующие аргументы: числа;​В этой статье описаны​ монитора, щелкаем по​ выведен на экран.​​ во вкладке​​ и в предыдущем​ общей суммы всех​«OK»​= СТАНДОТКЛОН(Число1;Число2;…)​ отношение стандартного отклонения​ предприятия А –​ 50%: ряд не​ Соответственно, сопоставить полученные​​ связанного с вложением​​Критерий. Это диапазон​

  • ​ выборке из генеральной​ вставьте их в​
  • ​ имена, массивы или​ синтаксис формулы и​ кнопке​Таким образом мы произвели​«Главная»​ случае, выделяем на​ значений числового ряда​.​= СТАНДОТКЛОН.Г(Число1;Число2;…)​ к среднему арифметическому.​

      ​ 33%. Риск инвестирования​ является однородным, данные​ результаты.​ средств в определенные​ ячеек, содержащий задаваемые​ совокупности. Вместо аргументов,​

    ​ ячейку A1 нового​

    ​ ссылки, содержащие числа;​​ использование функции​​Enter​ вычисление коэффициента вариации,​. Кликаем по полю​ листе нужную нам​ к их количеству.​Открывается окно аргументов данной​= СТАНДОТКЛОН.В(Число1;Число2;…)​​ Полученный результат выражается​​ в ценные бумаги​ значительно разбросаны относительно​При принятии инвестиционного решения​​ активы. Особенно эффективен​​ условия. В качестве​

  • ​ разделенных точкой с​ листа Excel. Чтобы​ текстовые представления чисел;​СТАНДОТКЛОНА​.​​ ссылаясь на ячейки,​​ формата на ленте​
  • ​ совокупность ячеек. После​ Для расчета этого​ функции. Оно может​Для того, чтобы рассчитать​ в процентах.​ фирмы В выше​ среднего значения.​ необходимо учитывать следующий​

    ​ в ситуации, когда​ аргумента критерия можно​ запятой, можно также​ отобразить результаты формул,​ логические значения, такие​в Microsoft Excel.​Существует условное разграничение. Считается,​ в которых уже​ в блоке инструментов​ того, как их​ показателя тоже существует​ иметь от 1​​ стандартное отклонение, выделяем​​В Экселе не существует​​ в 1,54 раза​​​ момент: когда ожидаемая​ у активов разная​ использовать любой диапазон,​ использовать массив или​ выделите их и​ как ИСТИНА и​Оценивает стандартное отклонение по​

    ​ что если показатель​

    СТАНДОТКЛОНА (функция СТАНДОТКЛОНА)

    ​ были рассчитаны стандартное​«Число»​ координаты были занесены​​ отдельная функция –​​ до 255 полей,​

    Описание

    ​ любую свободную ячейку​ отдельно функции для​ (50% / 33%).​Прежде чем включить в​ доходность актива близка​ доходность и различный​

    Синтаксис

    ​ который содержит по​

    ​ ссылку на массив.​ нажмите клавишу F2,​

    ​ ЛОЖЬ, в ссылке.​​ выборке. Стандартное отклонение​ коэффициента вариации менее​ отклонение и среднее​. Из раскрывшегося списка​ в поле окна​СРЗНАЧ​ в которых могут​ на листе, которая​ вычисления этого показателя,​ Это означает, что​

    Замечания

    ​ инвестиционный портфель дополнительный​ к 0, коэффициент​ уровень риска. К​ крайней мере один​И ещё одна​ а затем —​Аргументы, содержащие значение ИСТИНА,​ — это мера​ 33%, то совокупность​

    ​ арифметическое. Но можно​ вариантов выбираем​

    ​ аргументов, жмем на​. Вычислим её значение​ содержаться, как конкретные​ удобна вам для​ но имеются формулы​ акции компании А​ актив, финансовый аналитик​

    ​ вариации может получиться​ примеру, у одного​ заголовок столбца и​ функция.​ клавишу ВВОД. При​ интерпретируются как 1.​

    ​ того, насколько широко​ чисел однородная. В​ поступить и несколько​«Процентный»​ кнопку​ на конкретном примере.​ числа, так и​

    ​ того, чтобы выводить​ для расчета стандартного​ имеют лучшее соотношение​ должен обосновать свое​

    ​ большим. Причем показатель​ актива высокая ожидаемая​ по крайней мере​ДСТАНДОТКЛ (база_данных; поле;​ необходимости измените ширину​ Аргументы, содержащие текст​

    ​ разбросаны точки данных​ обратном случае её​

    ​ по-иному, не рассчитывая​. После этих действий​«OK»​

    Пример

    ​Выделяем на листе ячейку​ ссылки на ячейки​ в неё результаты​ отклонения и среднего​ риск / доходность.​ решение. Один из​ значительно меняется при​ доходность, а у​ одну ячейку под​ критерий)​ столбцов, чтобы видеть​ или значение ЛОЖЬ,​ относительно их среднего.​

    Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel

    Из предыдущей статьи мы узнали о таких показателях, как размах вариации, межквартильный размах и среднее линейное отклонение. В этой статье изучим дисперсию, среднеквадратичное отклонение и коэффициент вариации.

    Дисперсия

    Дисперсия случайной величины – это один из основных показателей в статистике. Он отражает меру разброса данных вокруг средней арифметической.

    Сейчас небольшой экскурс в теорию вероятностей, которая лежит в основе математической статистики. Как и матожидание, дисперсия является важной характеристикой случайной величины. Если матожидание отражает центр случайной величины, то дисперсия дает характеристику разброса данных вокруг центра.

    Читать еще:  Настройка ячеек в excel

    Формула дисперсии в теории вероятностей имеет вид:

    То есть дисперсия — это математическое ожидание отклонений от математического ожидания.

    На практике при анализе выборок математическое ожидание, как правило, не известно. Поэтому вместо него используют оценку – среднее арифметическое. Расчет дисперсии производят по формуле:

    s 2 – выборочная дисперсия, рассчитанная по данным наблюдений,

    X – отдельные значения,

    – среднее арифметическое по выборке.

    Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом здесь. Однако при увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной.

    Простыми словами дисперсия – это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя. Теперь вы знаете, как найти дисперсию.

    Расчет дисперсии в Excel

    Генеральную и выборочную дисперсии легко рассчитать в Excel. Есть специальные функции: ДИСП.Г и ДИСП.В соответственно.

    В чистом виде дисперсия не используется. Это вспомогательный показатель, который нужен в других расчетах. Например, в проверке статистических гипотез или расчете коэффициентов корреляции. Отсюда неплохо бы знать математические свойства дисперсии.

    Свойства дисперсии

    Свойство 1. Дисперсия постоянной величины A равна (нулю).

    Свойство 2. Если случайную величину умножить на постоянную А, то дисперсия этой случайной величины увеличится в А 2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

    Свойство 3. Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

    Свойство 4. Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

    Свойство 5. Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

    Среднеквадратичное (стандартное) отклонение

    Если из дисперсии извлечь квадратный корень, получится среднеквадратичное (стандартное) отклонение (сокращенно СКО). Встречается название среднее квадратичное отклонение и сигма (от названия греческой буквы). Общая формула стандартного отклонения в математике следующая:

    На практике формула стандартного отклонения следующая:

    Как и с дисперсией, есть и немного другой вариант расчета. Но с ростом выборки разница исчезает.

    Расчет cреднеквадратичного (стандартного) отклонения в Excel

    Для расчета стандартного отклонения достаточно из дисперсии извлечь квадратный корень. Но в Excel есть и готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

    Среднеквадратичное отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными.

    Коэффициент вариации

    Значение стандартного отклонения зависит от масштаба самих данных, что не позволяет сравнивать вариабельность разных выборках. Чтобы устранить влияние масштаба, необходимо рассчитать коэффициент вариации по формуле:

    По нему можно сравнивать однородность явлений даже с разным масштабом данных. В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. В реальности, если коэффициент вариации превышает 33%, то специально ничего делать по этому поводу не нужно. Это информация для общего представления. В общем коэффициент вариации используют для оценки относительного разброса данных в выборке.

    Расчет коэффициента вариации в Excel

    Расчет коэффициента вариации в Excel также производится делением стандартного отклонения на среднее арифметическое:

    Коэффициент вариации обычно выражается в процентах, поэтому ячейке с формулой можно присвоить процентный формат:

    Коэффициент осцилляции

    Еще один показатель разброса данных на сегодня – коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

    Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

    Таким образом, в статистическом анализе существует система показателей, отражающих разброс или однородность данных.

    Ниже видео о том, как посчитать коэффициент вариации, дисперсию, стандартное (среднеквадратичное) отклонение и другие показатели вариации в Excel.

    Как рассчитать среднеквадратическое отклонение в excel. Среднеквадратическое отклонение формулы в excel

    Проведение любого статистического анализа немыслимо без расчетов. В это статье рассмотрим, как рассчитать дисперсию, среднеквадратичное отклонение, коэффиент вариации и другие статистические показатели в Excel.

    Максимальное и минимальное значение

    Среднее линейное отклонение

    Среднее линейное отклонение представляет собой среднее из абсолютных (по модулю) отклонений от в анализируемой совокупности данных. Математическая формула имеет вид:

    a – среднее линейное отклонение,

    X – анализируемый показатель,

    – среднее значение показателя,

    В Эксель эта функция называется СРОТКЛ .

    После выбора функции СРОТКЛ указываем диапазон данных, по которому должен произойти расчет. Нажимаем «ОК».

    Дисперсия

    Возможно, не все знают, что такое , поэтому поясню, — это мера, характеризующая разброс данных вокруг математического ожидания. Однако в распоряжении обычно есть только выборка, поэтому используют следующую формулу дисперсии:

    s 2 – выборочная дисперсия, рассчитанная по данным наблюдений,

    X – отдельные значения,

    – среднее арифметическое по выборке,

    n – количество значений в анализируемой совокупности данных.

    Соответствующая функция Excel — ДИСП.Г . При анализе относительно небольших выборок (примерно до 30-ти наблюдений) следует использовать , которая рассчитывается по следующей формуле.

    Отличие, как видно, только в знаменателе. В Excel для расчета выборочной несмещенной дисперсии есть функция ДИСП.В .

    Выбираем нужный вариант (генеральную или выборочную), указываем диапазон, жмем кнопку «ОК». Полученное значение может оказаться очень большим из-за предварительного возведения отклонений в квадрат. Дисперсия в статистике очень важный показатель, но ее обычно используют не в чистом виде, а для дальнейших расчетов.

    Среднеквадратичное отклонение

    Среднеквадратичное отклонение (СКО) – это корень из дисперсии. Этот показатель также называют стандартным отклонением и рассчитывают по формуле:

    по генеральной совокупности

    Можно просто извлечь корень из дисперсии, но в Excel для среднеквадратичного отклонения есть готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

    Стандартное и среднеквадратичное отклонение, повторюсь, — синонимы.

    Далее, как обычно, указываем нужный диапазон и нажимаем на «ОК». Среднеквадратическое отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными. Об этом ниже.

    Коэффициент вариации

    Все показатели, рассмотренные выше, имеют привязку к масштабу исходных данных и не позволяют получить образное представление о вариации анализируемой совокупности. Для получения относительной меры разброса данных используют коэффициент вариации , который рассчитывается путем деления среднеквадратичного отклонения на среднее арифметическое . Формула коэффициента вариации проста:

    Для расчета коэффициента вариации в Excel нет готовой функции, что не есть большая проблема. Расчет можно произвести простым делением стандартного отклонения на среднее значение. Для этого в строке формул пишем:

    В скобках указывается диапазон данных. При необходимости используют среднее квадратичное отклонение по выборке (СТАНДОТКЛОН.В).

    Коэффициент вариации обычно выражается в процентах, поэтому ячейку с формулой можно обрамить процентным форматом. Нужная кнопка находится на ленте на вкладке «Главная»:

    Изменить формат также можно, выбрав из контекстного меню после выделения нужной ячейки и нажатия правой кнопкой мышки.

    Коэффициент вариации, в отличие от других показателей разброса значений, используется как самостоятельный и весьма информативный индикатор вариации данных. В статистике принято считать, что если коэффициент вариации менее 33%, то совокупность данных является однородной, если более 33%, то – неоднородной. Эта информация может быть полезна для предварительного описания данных и определения возможностей проведения дальнейшего анализа. Кроме того, коэффициент вариации, измеряемый в процентах, позволяет сравнивать степень разброса различных данных независимо от их масштаба и единиц измерений. Полезное свойство.

    Коэффициент осцилляции

    Еще один показатель разброса данных на сегодня — коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

    Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

    В целом, с помощью Excel многие статистические показатели рассчитываются очень просто. Если что-то непонятно, всегда можно воспользоваться окошком для поиска во вставке функций. Ну, и Гугл в помощь.

    Читать еще:  Разбить ячейку в excel на строки

    Функция стандартное отклонение это уже из разряда высшей математики относящейся к статистики. В Excel существует несколько вариантов использования Функции стандартного отклонения это:

    • Функция СТАНДОТКЛОНП.
    • Функция СТАНДОТКЛОН.
    • Функция СТАНДОТКЛОНПА

    Данные функции в статистике продаж нам понадобятся для выявления стабильности продаж (анализ XYZ). Эти данные можно использовать как для ценообразования, так и для формирования (корректирования) ассортиментной матрицы и для других полезных анализов продаж, о которых я обязательно расскажу в следующих статьях.

    Давайте посмотрим на формулы сначала математическим языком, а после (ниже по тексту) подробно разберем формулу в Excel и как получившийся результат применяется в анализе статистических данных продаж.

    Итак, Стандартное отклонение — это оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии)))) Не пугайтесь не понятных слов, потерпите и Вы все поймете!

    Описание формулы: Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины

    Теперь стандартное отклонение — оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии:

    i -й элемент выборки;

    Среднее арифметическое выборки:

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной.

    Правило трёх сигм () — практически все значения нормально распределённой случайной величины лежат в интервале . Более строго — приблизительно с 0,9973 вероятностью значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина истинная, а не полученная в результате обработки выборки). Мы же будем использовать округленный интервал 0,1

    Если же истинная величина неизвестна, то следует пользоваться не , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s . Именно это правило поможет нам определить стабильность продаж, но об этом чуть позже.

    Теперь Функция стандартного отклонения в Excel

    Надеюсь я не слишком Вас загрузил математикой? Возможно кому то данная информация потребуется для реферата или еще каких-нибудь целей. Теперь разжуем как эти формулы работают в Excel.

    Для определения стабильности продаж нам не потребуется вникать во все варианты функций стандартного отклонения. Мы будем пользоваться всего одной:

    Число1, число2. — от 1 до 30 числовых аргументов, соответствующих генеральной совокупности.

    Теперь разберем на примере:

    Давайте создадим книгу и импровизированную таблицу. Данный пример в Excel Вы скачаете в конце статьи.

    И снова здравствуйте. Ну что!? Выдалась свободная минутка. Давайте продолжим?

    И так стабильность продаж при помощи Функции СТАНДОТКЛОНП

    Для наглядности возьмем несколько импровизированных товаров:

    В аналитике, будь то прогноз, исследование или еще что то, что связано с статистикой всегда необходимо брать три периода. Это может быть неделя, месяц, квартал или год. Можно и даже лучше всего брать как можно больше периодов, но не менее трех.

    Я специально показал утрированные продажи, где не вооруженным глазом видно, что продается стабильно, а что нет. Так проще будет понять как работают формулы.

    И так у нас есть продажи, теперь нам нужно рассчитать средние значения продаж по периодам.

    Формула среднего значения СРЗНАЧ(данные периода) в моем случае формула выглядит вот так =СРЗНАЧ(C6:E6)

    Протягиваем формулу по всем товарам. Это можно сделать взявшись за правый угол выделенной ячейки и протянуть до конца списка. Или поставить курсор на столбец с товаром и нажать следующие комбинации клавиш:

    Ctrl + Вниз курсор переместиться в коней списка.

    Ctrl + Вправо, курсор переместиться в правую часть таблицы. Еще раз вправо и мы попадем на столбец с формулой.

    Ctrl + Shift и нажимаем вверх. Так мы выделим область протягивания формулы.

    И комбинация клавиш Ctrl + D протянет функцию там где нам надо.

    Запомните эти комбинации, они реально увеличивают Вашу скорость работы в Excel, особенно когда Вы работаете с большими массивами.

    Следующий этап, сама функция стандартного откланения, как я уже говорил мы будем пользоваться всего одной СТАНДОТКЛОНП

    Прописываем функцию и в значениях функции ставим значения продаж каждого периода. Если у Вас продажи в таблице друг за другом можно использовать диапазон, как у меня в формуле =СТАНДОТКЛОНП(C6:E6) или через точку с запятой перечисляем нужные ячейки =СТАНДОТКЛОНП(C6;D6;E6)

    Вот все расчеты и готовы. Но как понять, что продается стабильно, а что нет? Просто проставим условность XYZ где,

    Х — это стабильно

    Y — с не большими отклонениями

    Z — не стабильно

    Для этого используем интервалы погрешности. если колебания происходят в пределах 10% будем считать что продажи стабильны.

    Если в пределах от 10 до 25 процентов — это будет Y.

    И если значения вариации превышает 25% — это не стабильность.

    Что бы правильно задать буквы каждому товару, воспользуемся формулой ЕСЛИ подробнее про . В моей таблице данная функция будет выглядеть так:

    Среднеквадратичное отклонение в excel

    Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

    В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

    Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

    Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

    Например, у нас есть временной ряд — продажи по неделям в шт.

    Для этого временного ряда i=1, n=10 , ,

    Рассмотрим формулу среднего значения:

    Для нашего временного ряда определим среднее значение

    Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

    Формула расчета среднеквадратического отклонение для выборки следующая:

    Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

    1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

    = СРЗНАЧ(ссылка на диапазон) = 100/10=10

    2. Определим отклонение каждого значения ряда относительно среднего

    для первой недели = 6-10=-4

    для второй недели = 10-10=0

    для третей = 7-1=-3 и т.д.

    3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего

    для первой недели = (-4)^2=16

    для второй недели = 0^2=0

    для третей = (-3)^2=9 и т.д.

    4. Рассчитаем сумму квадратов отклонений значений относительно среднего с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

    =16+0+9+4+16+16+4+9+0+16=90

    5. , для этого сумму квадратов отклонений значений относительно среднего разделим на количество значений минус единица (Сумма((Xi-Xср)^2))/(n-1)

    = 90/(10-1)=10

    6. Среднеквадратическое отклонение равно = корень(10)=3,2

    Итак, в 6 шагов мы разложили сложную математическую формулу, надеюсь вам удалось разобраться со всеми частями формулы и вы сможете самостоятельно разобраться в других формулах.

    Рассмотрим еще один показатель, который в будущем нам понадобятся — дисперсия.

    Как рассчитать дисперсию в Excel?

    Дисперсия — квадрат среднеквадратического отклонения и отражает разброс данных относительно среднего.

    Рассчитаем дисперсию:

    Итак, теперь мы умеем рассчитывать среднеквадратическое отклонение и дисперсию в Excel. Надеемся, полученные знания пригодятся вам в работе.

    Точных вам прогнозов!

    Присоединяйтесь к нам!

    Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа:

    • Novo Forecast Lite — автоматический расчет прогноза в Excel .
    • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
    • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

    Тестируйте возможности платных решений:

    • Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

    Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

    Как рассчитать среднеквадратическое отклонение в excel. Среднеквадратическое отклонение формулы в excel

    Проведение любого статистического анализа немыслимо без расчетов. В это статье рассмотрим, как рассчитать дисперсию, среднеквадратичное отклонение, коэффиент вариации и другие статистические показатели в Excel.

    Максимальное и минимальное значение

    Среднее линейное отклонение

    Среднее линейное отклонение представляет собой среднее из абсолютных (по модулю) отклонений от в анализируемой совокупности данных. Математическая формула имеет вид:

    a – среднее линейное отклонение,

    X – анализируемый показатель,

    – среднее значение показателя,

    В Эксель эта функция называется СРОТКЛ .

    После выбора функции СРОТКЛ указываем диапазон данных, по которому должен произойти расчет. Нажимаем «ОК».

    Дисперсия

    Возможно, не все знают, что такое , поэтому поясню, — это мера, характеризующая разброс данных вокруг математического ожидания. Однако в распоряжении обычно есть только выборка, поэтому используют следующую формулу дисперсии:

    Читать еще:  Выполнение двух условий в excel

    s 2 – выборочная дисперсия, рассчитанная по данным наблюдений,

    X – отдельные значения,

    – среднее арифметическое по выборке,

    n – количество значений в анализируемой совокупности данных.

    Соответствующая функция Excel — ДИСП.Г . При анализе относительно небольших выборок (примерно до 30-ти наблюдений) следует использовать , которая рассчитывается по следующей формуле.

    Отличие, как видно, только в знаменателе. В Excel для расчета выборочной несмещенной дисперсии есть функция ДИСП.В .

    Выбираем нужный вариант (генеральную или выборочную), указываем диапазон, жмем кнопку «ОК». Полученное значение может оказаться очень большим из-за предварительного возведения отклонений в квадрат. Дисперсия в статистике очень важный показатель, но ее обычно используют не в чистом виде, а для дальнейших расчетов.

    Среднеквадратичное отклонение

    Среднеквадратичное отклонение (СКО) – это корень из дисперсии. Этот показатель также называют стандартным отклонением и рассчитывают по формуле:

    по генеральной совокупности

    Можно просто извлечь корень из дисперсии, но в Excel для среднеквадратичного отклонения есть готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

    Стандартное и среднеквадратичное отклонение, повторюсь, — синонимы.

    Далее, как обычно, указываем нужный диапазон и нажимаем на «ОК». Среднеквадратическое отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными. Об этом ниже.

    Коэффициент вариации

    Все показатели, рассмотренные выше, имеют привязку к масштабу исходных данных и не позволяют получить образное представление о вариации анализируемой совокупности. Для получения относительной меры разброса данных используют коэффициент вариации , который рассчитывается путем деления среднеквадратичного отклонения на среднее арифметическое . Формула коэффициента вариации проста:

    Для расчета коэффициента вариации в Excel нет готовой функции, что не есть большая проблема. Расчет можно произвести простым делением стандартного отклонения на среднее значение. Для этого в строке формул пишем:

    В скобках указывается диапазон данных. При необходимости используют среднее квадратичное отклонение по выборке (СТАНДОТКЛОН.В).

    Коэффициент вариации обычно выражается в процентах, поэтому ячейку с формулой можно обрамить процентным форматом. Нужная кнопка находится на ленте на вкладке «Главная»:

    Изменить формат также можно, выбрав из контекстного меню после выделения нужной ячейки и нажатия правой кнопкой мышки.

    Коэффициент вариации, в отличие от других показателей разброса значений, используется как самостоятельный и весьма информативный индикатор вариации данных. В статистике принято считать, что если коэффициент вариации менее 33%, то совокупность данных является однородной, если более 33%, то – неоднородной. Эта информация может быть полезна для предварительного описания данных и определения возможностей проведения дальнейшего анализа. Кроме того, коэффициент вариации, измеряемый в процентах, позволяет сравнивать степень разброса различных данных независимо от их масштаба и единиц измерений. Полезное свойство.

    Коэффициент осцилляции

    Еще один показатель разброса данных на сегодня — коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

    Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

    В целом, с помощью Excel многие статистические показатели рассчитываются очень просто. Если что-то непонятно, всегда можно воспользоваться окошком для поиска во вставке функций. Ну, и Гугл в помощь.

    Функция стандартное отклонение это уже из разряда высшей математики относящейся к статистики. В Excel существует несколько вариантов использования Функции стандартного отклонения это:

    • Функция СТАНДОТКЛОНП.
    • Функция СТАНДОТКЛОН.
    • Функция СТАНДОТКЛОНПА

    Данные функции в статистике продаж нам понадобятся для выявления стабильности продаж (анализ XYZ). Эти данные можно использовать как для ценообразования, так и для формирования (корректирования) ассортиментной матрицы и для других полезных анализов продаж, о которых я обязательно расскажу в следующих статьях.

    Давайте посмотрим на формулы сначала математическим языком, а после (ниже по тексту) подробно разберем формулу в Excel и как получившийся результат применяется в анализе статистических данных продаж.

    Итак, Стандартное отклонение — это оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии)))) Не пугайтесь не понятных слов, потерпите и Вы все поймете!

    Описание формулы: Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины

    Теперь стандартное отклонение — оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии:

    i -й элемент выборки;

    Среднее арифметическое выборки:

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной.

    Правило трёх сигм () — практически все значения нормально распределённой случайной величины лежат в интервале . Более строго — приблизительно с 0,9973 вероятностью значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина истинная, а не полученная в результате обработки выборки). Мы же будем использовать округленный интервал 0,1

    Если же истинная величина неизвестна, то следует пользоваться не , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s . Именно это правило поможет нам определить стабильность продаж, но об этом чуть позже.

    Теперь Функция стандартного отклонения в Excel

    Надеюсь я не слишком Вас загрузил математикой? Возможно кому то данная информация потребуется для реферата или еще каких-нибудь целей. Теперь разжуем как эти формулы работают в Excel.

    Для определения стабильности продаж нам не потребуется вникать во все варианты функций стандартного отклонения. Мы будем пользоваться всего одной:

    Число1, число2. — от 1 до 30 числовых аргументов, соответствующих генеральной совокупности.

    Теперь разберем на примере:

    Давайте создадим книгу и импровизированную таблицу. Данный пример в Excel Вы скачаете в конце статьи.

    И снова здравствуйте. Ну что!? Выдалась свободная минутка. Давайте продолжим?

    И так стабильность продаж при помощи Функции СТАНДОТКЛОНП

    Для наглядности возьмем несколько импровизированных товаров:

    В аналитике, будь то прогноз, исследование или еще что то, что связано с статистикой всегда необходимо брать три периода. Это может быть неделя, месяц, квартал или год. Можно и даже лучше всего брать как можно больше периодов, но не менее трех.

    Я специально показал утрированные продажи, где не вооруженным глазом видно, что продается стабильно, а что нет. Так проще будет понять как работают формулы.

    И так у нас есть продажи, теперь нам нужно рассчитать средние значения продаж по периодам.

    Формула среднего значения СРЗНАЧ(данные периода) в моем случае формула выглядит вот так =СРЗНАЧ(C6:E6)

    Протягиваем формулу по всем товарам. Это можно сделать взявшись за правый угол выделенной ячейки и протянуть до конца списка. Или поставить курсор на столбец с товаром и нажать следующие комбинации клавиш:

    Ctrl + Вниз курсор переместиться в коней списка.

    Ctrl + Вправо, курсор переместиться в правую часть таблицы. Еще раз вправо и мы попадем на столбец с формулой.

    Ctrl + Shift и нажимаем вверх. Так мы выделим область протягивания формулы.

    И комбинация клавиш Ctrl + D протянет функцию там где нам надо.

    Запомните эти комбинации, они реально увеличивают Вашу скорость работы в Excel, особенно когда Вы работаете с большими массивами.

    Следующий этап, сама функция стандартного откланения, как я уже говорил мы будем пользоваться всего одной СТАНДОТКЛОНП

    Прописываем функцию и в значениях функции ставим значения продаж каждого периода. Если у Вас продажи в таблице друг за другом можно использовать диапазон, как у меня в формуле =СТАНДОТКЛОНП(C6:E6) или через точку с запятой перечисляем нужные ячейки =СТАНДОТКЛОНП(C6;D6;E6)

    Вот все расчеты и готовы. Но как понять, что продается стабильно, а что нет? Просто проставим условность XYZ где,

    Х — это стабильно

    Y — с не большими отклонениями

    Z — не стабильно

    Для этого используем интервалы погрешности. если колебания происходят в пределах 10% будем считать что продажи стабильны.

    Если в пределах от 10 до 25 процентов — это будет Y.

    И если значения вариации превышает 25% — это не стабильность.

    Что бы правильно задать буквы каждому товару, воспользуемся формулой ЕСЛИ подробнее про . В моей таблице данная функция будет выглядеть так:

    Ссылка на основную публикацию
    Adblock
    detector